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ABSTRACT

The problems addressed in this the3is are that the combat simulator Janus does not

generate combat scenarios in a three-dimensional interface, and that Janus scenarios are

incompatible with the three-dimensional NPSNET. Janus' two-dimensionality led in some

cases to less realistic path and position selections, and more realism was desired for

evaluations of combat systems.

The approach to solving the problems was to generate a script file for NPSNET from

a Janus combat scenario. Then the scripted scenario was run on NPSNET where

interactions between combat systems could be observed in a three-dimensional virtual

battlefield. Entities could be maneuvered in NPSNET to create more realistic paths. The

maneuvers were written to a script which was then merged with the original Janus scenario.

The result of this work is six programs which assemble a Janus scenario into an

NPSNET script file; and two programs which write the results of the NPSNET maneuvers

into the original Janus scenario. With these programs users can develop or evaluate Janus

scenarios from the more realistic perspective of a soldier on the battlefield rather than from

an artificial perspective above a two-dimensional battlefield. Also combat systems can be

evaluated in a more realistic environment. These results provided greater realism for an

existing combat simulator. Accesion For
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I. INTRODUCTION

A. STATEMENT OF PROBLEM

The problem was that the Janus combat simulator was only two-dimensional. This

thesis was a proof of concept design of a three-dimensional interface for Janus. With the

three-dimensional interface, the user could do path planning and line of sight estimates

from the perspective of a soldier seeing the battlefield rather than from the perspective of a

point above a two-dimensional battlefield. This three-dimensional capability was intended

to enhance scenario generation, modification and evaluation by providing a more realistic

view of the battlefield.

Even though present and future military spending cutbacks will reduce the number of

large scale training exercises the military can afford, the need for realistic training will not

diminish. Realistic training is essential for our military units to maintain a high state of

combat readiness. Realistic training more often than not means three-dimensional and

interactive training.

Combat simulation systems have already proven to be valuable and economical

alternatives to live exercises. Computer simulated training exercises do not use real fuel or

live ammunition to move and shoot in cyberspace. Training in cyberspace does not pollute

the environment. Further, the participants in the exercises spend more time training than

deploying to and from field locations. However, many of these useful combat simulation

systems were designed to display the battlefield in two-dimensions which, at the time of

their development, was state of the art. Upgrading these proven training tools to allow the

users to view the battlefield in three dimensions for combat scenario development or

evaluation is a cost effective way of making good combat simulation systems more

realistic.

The Computer Science Department at the Naval Postgraduate School in Monterey,

California has developed a low-cost battlespace simulation system, known as NPSNET,
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which displays objects in a three-dimensional interactive space [Zyda92]. NPSNET is

designed to work on off-the-shelf Silicon Graphics IRIS workstations.

The United States Army Training and Doctrine Command uses a ground combat

simulation system called Janus for training, research, and testing of combat systems. In

1992 at the Naval Postgraduate School, CPT Pat Warren USA and CPT Jon Walter USA

integrated Janus with NPSNET so that an existing Janus terrain database could be displayed

in a three-dimensional virtual reality world. [Walt92]

The goal of this research is to develop a tool that translates Janus initialization data

files into a script suitable for the three-dimensional, interactive environment of NPSNET.

And then to translate back into the Janus data files the scenario developed in NPSNET. This

goal is represented in Figure 1.

B. SUMMARY OF CHAPTERS

Chapter 11 provides an overview of NPSNET. Chapter III provides an overview of

Janus. Chapter IV discusses the translation of Janus binary data to an NPSNET input script

file. Chapter V covers the translation of an NPSNET output script file into the Janus binary

data files. Chapter VI is a summary of conclusions and further work. Appendix A contains

the user guide for the Janus/NPSNET scripting system.
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II. OVERVIEW OF NPSNET

NPSNET is a real-time, three-dimensional visual simulation system, currently under

development at the Computer Science Department of the Naval Postgraduate School (NPS)

in Monterey, California [Zyda92]. NPSNET is designed to be a low-cost simulation system

run on Silicon Graphics, Inc. IRIS workstations with the IRIX (UNIX based) operating

system [SGI 91].

NPSNET is a totally interactive battle simulation system in which the user can select

any one of 500 different active vehicles and control it with several devices, including a six

degree of freedom SpaceBall, a keyboard, a mouse and a button/dialbox. Other vehicles in

the simulation are controlled by users on other workstations, expert systems, or by

NPSNET itself.

Different modes of combat modeling were available in NPSNET such as control,

script, and network. First, the models can be maneuvered in the three-dimensional

battlefield by a player on one machine interface. The second mode of combat modeling

uses an Ethernet network for communication and interaction between local workstations

where NPSNET broadcasts locally designed packets. For large scale interaction at many

different levels, a translator has been implemented which provides the capability to

transmit packets compatible with the Simulation Networking (SIMNET) protocol. Current

work includes the design of an expanded translator which is compatible with the

Distributed Interactive Simulation (DIS) protocol. [Zyda93]

Scripting was another modeling mode of NPSNET where scenarios of combat

operations could be viewed in three dimensions. This was the mode used in this thesis.

When in the scripting mode, NPSNET used script files to store combat scenario

information. Script files could also be generated by NPSNET wherein entity actions were

stored. Actions were represented in the script files by lines of data where each line, or series

of lines, represented an event. The script line format consisted of fifteen fields which

contained all the data NPSNET required to display the entity at a specific time, place and
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orientation. So a turn by a vehicle for example could be represented by one or more script

lines.

Vehicles and objects in NPSNET are modeled using the locally developed NPS Object

File Format (NPSOFF) [Zyda93]. NPSOFF is an ASCII formatted language which

incorporates many Graphics Library (GL) [SGI911 function calls into a single object file.

The overall format of NPSOFF closely resembles a series of standard GL calls. By

representing objects in this way, NPSOFF provides a simple method of encapsulating

objects which are easily transportable between programs and can be referenced in an

abstract manner. An ASCII format also makes the file readable and modifiable with any

text editor. Ongoing work on NPSNET models includes implementation of the Graphics

Description Language (NPSGDL) which is a C++ based system to further encapsulate

models and their properties [WiJs92].



III. JANUS OVERVIEW

Janus is a United States Army interactive, computer based, war-gaming simulation of

brigade and lower level unit combat operations. The original Janus simulation began in the

late 1970's at the Lawrence Livermore National Laboratory (LLNL) to model nuclear

effects. It gained a considerable reputation for innovative use of graphical user interfaces.

The U. S. Army Training and Doctrine Analysis Command, White Sands Missile Range,

New Mexico (TRAC-WSMR), acquired this prototype from LLNL as a result of the Janus

Acquisition and Development Project directed by the U. S. Army Training and Doctrine

Command in 1980. In 1983, TRAC-WSMR adopted Janus and further developed it as a

high resolution simulation to support analysis for Army combat developments. [Walt 92]

The original version developed at LLNL is known as Janus(L), and the model

developed by TRAC-WSMR is known as Janus(T). Both of these models gained in

popularity and were employed by a large number of users, which led to the proliferation of

different versions of the models. The Janus(Army) Program began in 1989 to solve the

standardization problem and to field a single version - Janus(A). Today Janus(A) is

developed, maintained and distributed by TRAC-WSMR and is fielded throughout the

world as a tool for both trainers and analysts in research, testing and combat development.

[Walt 92]

Janus(A) is a "two-sided", interactive, closed, stochastic, ground combat simulation.

Janus is "two-sided" since it simulates two opposing forces - the blue force and the red

force - simultaneously directed and controlled by players on separate monitors. It is termed

'closed' since players do not know the complete disposition of opposing forces - each

monitor displays only the vehicles on its side and the opposing force vehicles which can be

observed from its vehicles. The model is 'interactive' because each player monitors,

directs, reacts to, and redirects all key actions of the simulated units under his control. Once

a scenario is started, certain events in the game, such as direct fires and artillery impacts,

are stochastically modeled, which means the events act according to the laws of probability,

6



and thus are slightly different for every scenario run. The principal modeling focus in

Janus(A) is on military systems that participate in maneuver and artillery operations on

land, thus the term 'ground combat simulation'. [Walt 92]

Initially, Janus was run on any Digital Equipment Corporation VAX family of

computers using the standard VMS operating system. In 1991, the U. S. Army directed that

Janus(A) be fielded on an "open system". In April, 1992 Jim Guyton of the Rand

Corporation delivered a working prototype of Janus (A) for UNIX. This new version, called

Janus(X) is identical to Janus(A) except that FORTRAN calls to Tektronix screens are

replaced with "C" programming language calls to the X-Windows environment. [Walt 92]

Janus(A) is composed entirely of Army-developed algorithms and data to model

combat processes. The multitude of programs which belong to Janus(A) consist of

approximately 200,000 lines of code written entirely in VAX- 11 FORTRAN, a structured

Digital Equipment Corporation extension of ANSI standard FORTRAN-77. In addition to

these combat simulation pro,-,ams, Janus(A) also has eleven utility programs to facilitate

the creation, running, and after-action analysis of a specific scenario. [Walt 92]

Previous integration of NPSNET with Janus post-processor files was accomplished by

CPT Pat Warren and CPT Jon Walter in 1992 at the Naval Postgraduate School. Their

integration of Janus with NPSNET concentrated on the output of Janus: the post processor

files. Their work is represented in Figure 2.
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IV. BUILDING A NPSNET SCRIPT FILE FROM A JANUS
SCENARIO

A. THE DATA FILES

The four binary data files SYSTMXXX.DAT, DPLOYXXX.DAT,

FORCXXX.DAT, and JSCRNXXX.DAT described a Janus scenario (where the XXX

represent the digits of a scenario number). Of the four binary files which made up a Janus,

scenario only three were needed to build an NPSNET script file: SYSTMXXX.DAT,

DPLOYXXX.DAT, and FORCXXX.DAT. No post-processing information was used.

Each of the files was composed of many arrays of data in binary format. In order to

understand how each binary data file was organized, the FORTRAN subroutines that read

each type of data file had to be translated. The read subroutines told the order of data in

each file and how many arrays there were. For example, the subroutine DPLOYREAD told

that XUN1T was the first of thirty-one arrays in the DPLOYXXX.DAT data file, Table 1.

FORCREAD listed fourteen, and SYSTMREAD listed two hundred thirty-six arrays,

Tables 2 and 3. A few of the Janus parameters tell a lot about the system. The parameter

Table 1: ARIAYS IN DPLOYXXX.DAT JANUS DEPLOY FILE

Array Element Size of Array Offset of Arrays
Name of Array SzoAaUsed (bytes)a

XUNIT real numbers 600x2 4

YUNIT real numbers 600x2 4804

MOUNTED short integers 600x2

KHOLFIR bytes 600x2

MOPP bytes 600x2

KDEFL bytes 600x2

MAXPREP short integers 2

NBRPREP short integers 2

PREPX real numbers 600x2

9



Table 1: ARRAYS IN DPLOYXXX.DAT JANUS DEPLOY FILE

Name of Array Array Element Size of Array Offset of Arrays
Type Used (bytes)a

PREPY real numbers 600x2

XNODE real numbers 50x600x2 25236

YNODE real numbers 50x600x2 265236

IOBJPrR integers 600x2

KTIMENODE short integers 5lx600x2 506436

KFLAGNODE bytes 51x600x2

DVIEW real numbers 600x2 693644

DLEFT real numbers 600x2

DRIGT real numbers 600x2

DFORM real numbers 600x2

KOBTYPE byte 1

KOBSIDE byte 1

XOBST real numbers 2x200

YOBST real numbers 2x200

FYIELDS byte I

MINEFLDS integers 16x50

KSPRINT bytes 600x2

KMQNEXT integer 1

KBTRYSMSN integers 200

KBTRYTMSN integers 200

KBTRYTIME bytes 200

KQMSN integers 10x12x200

a. Only the values of interest to this thesis are entered.

NUMUNITS has a value of 600, which is the number of systems each side can have.

NUMSIDES has the value of two - there are two sides in Janus. NUMNODES has the value

10



of 50, which is the maximum number of way points which may be entered for each system.

Many of the arrays are set up NUMUNITS * NUMSIDES, which means each data element

in the array corresponds to a particular system.

Table 2: ARRAYS IN FORCXXX.DAT JANUS FORCE FILE

Name of Array Array Element Size of Array Offset of Arrays

Type Used (bytes)

KNUMUNITS short integers 2 0

KSYSTYP short integers 600x2 4

KCSDTYP short integers 600x2

KNUMELE bytes 600x2

KTASKFOR bytes 600x2

KMCLRFUN bytes 600x2

KMCLRLOD bytes 600x2

KMINLOD short integers 600x2

KCLASSF bytes 20

KPHPKFILE byte 1

KWTHTYP byte 1

KSIMSYS short integers 50x2

KSIMWPN short integers 50x2

STUDYNAM character 16

11



Table 3: ARRAYS IN SYSTMXXX.DAT JANUS SYSTEM FILE

Array Element Size of Array Offset of Arrays
Name of Arraya SzoAaUsed (bytes)

WETHRNAM character 1

SYSTNAME character 50x2 16

WEAPNAME character 50x2

a. The only the first three of the 236 arrays are not listed for brevity.

But these FORTRAN read programs did not tell how big each array was. To get the

size of each array numerous forces files such as GLBUNITS.FOR and GLOBDIR.FOR,

which listed the parameters of each array, had to be researched. So, for example, to find

the size of the array XUNIT in the DPLOYXXX.DAT data file, look in the

GLBUNITS.FOR file which lists the global variables that are the parameters of XUNIT:

NUMUNITS and NUMSIDES. The values of the parameters might sometimes be found in

GLBPARAM.FOR or sometimes the parameter might be listed in the forces file that

defined the array.

Finally, the size of the data type had to be determined. By convention, variable names

in FORTRAN beginning with I,J,KL,M,N,O were integers, and variable names beginning

with other letters were not integers. Still there were further distinctions to be made for

integers such as whether the integer was long or short. The point was to determine the

length in bytes of each data unit in the arrays. Long integers and real numbers used four

bytes, short integers used two bytes, and char a single byte unit of data. The single byte,

and short integers were most often defined at the beginning of the forces file in which they

were used.

12



B. READING THE JANUS FILES

When NPSNET was in the scripting mode, all the information required by NPSNET

to place and orient a system at a designated point in time was given in a script line. Each

line corresponded to a system at a starting point or a system at a node along the path the

system was to follow. An NPSNET script file was made up of script lines and each line had

fifteen fields of information. Figure 3 shows the fields of an NPSNET script line.

HOURS MDR= SECONDS

SYSIEMNUMBER SYSTEMTY

X COORDIATE COORDINAT Z CoQRpINA

SYSTEM ORIENTATION WEAPON ORIENATION

ELEVATION ABOVE GROUND WEAPON ELEVATION

SPEED NUMBER OF SHOTS FIRED)

WIMETER• SYSTEM IS ALIVE

Figure 3 NPSNET Script Line Fields

Thiree processes readsundeploy, readsunforce, and readsunsystem took data from the

Janus scenario files and stored the information in intermediate files. The process

writescriptin assembled the data into an NPSNET script file.

Once it was determined which data arrays were to be used, the beginning of each array

had to be determined so data could be read from the array, and so that data could be written

back into the array. For example, in the data file DPLOYXXX.DAT, the data in the arrays

13



XUNIT, YUNIT, XNODE, YNODE, and DVIEW were needed. Table 1 above showed the

DPLOYXXX.DAT arrays in order with their corresponding parameter types and sizes.

With the above information, it was a simple though tedious task to determine how

many bytes the pointer at the beginning of the data file must traverse to get to any data

element in any array. To assist in determining and confirming where data elements were in

the vast binary initialization files, the system command od, octal dump, was very useful.

This command dumps the contents of a binary file in one of several formats specified on

the command line. The most useful format was -f which interpreted long words as floating

point. This od command was also particularly useful since, in a few cases, the

documentation for the array types was nebulous or contradictory, which made calculations

of how many bytes to traverse to a particular array element deep in a binary file very tricky.

With the od command, it was sometimes possible to determine by observation of the binary

data where one type of data ended and another began which confirmed calculations of

where particular types of data began or ended.

1. Readsundeploy

This process took as an argument the name of a binary data file of the form

DPLOYXXX.DAT where the XXX represented the number of a particular Janus scenario.

Janus systems have their initial node coordinates, subsequent node coordinates, node times,

and initial orientations in DPLOYXXX.DAT. Figure 4 shows how readsundeploy

contributed to the assembly of a NPSNET script.

a. XUNIT

XUNIT was the name of the Janus array for the x coordinates of the starting

points of the 1200 systems. This data was found at the beginning of the binary data file, at

the fourth byte, and was written to XUNITDAT.

14



rSCRffPTFIEIN.DAT

FORCE DAT

readsundeploy
1!77 7!, s-YSEM DATAJ

rDPLOIYXXX.DAT

Figure 4 Processes and Data Files of Deploy Data from Janus to
NPSNET
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b. YUNIT

YUN1T was the name of the Janus array for the y coordinates of the starting

points of the 1200 systems. This data was the second array of data elements in

DPLOYXXX.DAT. It was written to YUNITDAT file.

c. XNODE

The XNODE array contained the x coordinates of the 50 possible path node

points of each system - so the array had 60000 elements. The XNODE array was the

eleventh array of data in DPLOYXXX.DAT and its values were written to the

XNODEDAT file.

d. YNODE

The YNODE array contained the y coordinates of the 50 possible path node

points of each system - so the array had 60000 elements. The Ynode data was the twelfth

array in the binary data file and was written to YNODEDAT.

e. KTIMENODE

The KTIMENODE array contained the time in seconds from the start of the

scenario for each of the path node points of each system. The array had 61200 entries - an

entry for every start time and node time of all 1200 possible systems. For example, if the

20th byte of the array was 77 that would mean that the twentieth node of the first vehicle

would be reached at one minute and 17 seconds. KTLMENODE was the fourteenth array

of data in DPLOYXXX.DATand was written to the TNODE_DAT file. Note that this set

of data was unlike Xnode and Ynode data since it included the times of the starting and

subsequent positions: starting x and y coordinates were stored in separate data structures

from x and y subsequent path node coordinates.

16



f. DVIEW

The DVIEW array contained the initial view directions in radians of the 1200

systems. DVIEW was the sixteenth array of data in DPLOYXXX.DATand was written to

the DVIEWDAT file.

2. Readsunforce

This process took as an argument the name of a binary data file of the form

FORCXXX.DAT. The only array of data used in this binary data file was the KSYSTYP

array which was written into the SYSTYP_DAT file. Figure 5 shows how readsunforce

contributed to the NPSNET script file.

3. Readsunsystem

This process took as an argument the name of a binary data file of the form

SYSTMXXX.DAT. The only data array used in this file was the system names array

SYSTMNAMES. The array was the second in the file and each element was a string name.

There were fifty possible system names for each side. Figure 6 shows how readsunsystem

contributed to the NPSNET script file.

When considering the KSYSTYPE array in FORCXXX.DAT, we saw that the

array size was NUMUNITS * NUMSIDES which meant the array consisted of 1200

elements. And each element corresponded to a particular system. The value in the array was

a number which corresponded to the name of the system. In SYSTMXXX.DAT, the second

array was called SYSTMNAMES, which listed the string name which corresponded to

each number. Each side was allowed fifty different system names, so the array

SYSTMNAMES had one hundred entries. The first fifty corresponded to one side, the

second fifty corresponded to the other side. For instance in scenario 716, the number 17 on

the blue side corresponded to a M lA 1 tank, and on the red side the number 17 corresponded

to a BRDM-M.
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Figure 5 Processes and Data Files of Force Data
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Figure 6 Processes and Data Files of System Data
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C. ASSEMBLING THE DATA INTO AN NPSNET SCRIPT

The separate ASCII data files were "read" by function calls inside two loops. The outer

loop corresponded to each system and the inner loop corresponded to paths of each system.

So the inner loop could iterate fifty times for each iteration of the outer loop if all 1200

systems were used and each system had a path with fifty nodes. The data was processed and

finally written to the file called scriptfilein.dat which was the script file used by NPSNET.

The following paragraphs describe the processes that converted Janus data into NPSNET

script files.

1. Maxandmin

This process found the maximum and minimum x and y coordinates from the

XUNITDAT, XNODEDAT, YUNIT_DAT, YNODEDAT files. These values were

used in the conversion of the coordinates from the UTM (universal transverse mercator)

system used by Janus to world coordinates that NPSNET understood. The conversion

factor was derived by finding the range from maximum to minimum in both x and y, taking

the larger range, and dividing it into the size of the NPSNET terrain data base. The

conversion factor depended on the NPSNET terrain data base used. For example, the

conversion factor for the Fulda Gap scenario was 240: The range of both x and y values was

50, and the size of the Fulda Gap terrain data base in NPSNET was 12,000. This

maxandmin process was done after readsundeploy and before writescriptin.

2. Main process of writescriptin

Each iteration of the outer loop of writescriptin read data from five intermediate

files: xunit_dat, yunit.dat, tnode-dat, systype-dat, and dview_dat. Each iteration provided

the data for the initial node of the twelve hundred systems. The Janus scenario data base

had 0.0 for the values of the initial x and y coordinates of unused systems. This data was

printed to the script lines which corresponded to the unused vehicles. The values of the x

and y coordinates on the scanned lines were tested, and if they were greater than or equal

to the minimum x and y values determined by the process "maxandmin", then the scanned
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lines contained useful information. Scanned script lines which did not contain useful

information were not processed. All the information about a particular system could have

been contained in only one script line or there could have been fifty subsequent script lines

each containing subsequent node information.

a Processing Initial node data

The following were the steps taken to process initial node data:

(1) Janus time was total time in seconds from the start of the scenario.

NPSNET used hours, minutes, and seconds. So the total time given in seconds was

converted and stored in buffers named hours, minutes and seconds. The values in the hours,

minutes and seconds buffers were written in that order to the script file npsscriptin.

(2) The system number was the same as the number of the counter of the

outer loop, and it was stored in a buffer call sys,.num. The sysnum buffer content was

written to npsscriptin next.

(3) The system type given by Janus was an integer which corresponded to a

set of system characteristics. The function general-system.information took the system

type number as its argument and assigned the system name, maximum speed, and

corresponding NPSNET number to the buffers systypebuf, max.systemrnspeed, and

npsnet-sys.type.num. The npsnet.sys..typepnum buffer content was written next to

npsscriptin.

(4) The x coordinate given by Janus was converted to a coordinate that could

be usefully displayed on NPSNET. This was done with a SCALE factor which was defined

at the beginning of writescriptin.c. The factor was derived by dividing the difference

between the maximum and minimum values of the scenario into the width of the terrain

data as displayed on NPSNET. In the case of the Fulda Gap scenario, the difference was

50. The width of the Fulda Gap terrain data base was 12,000 meters. So in this case the

SCALE factor was 240. The x coordinate value used by NPSNET was the difference
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between the xcoordinate read and the minimum x value, multiplied by the SCALE factor.

This x coordinate value was stored in a buffer called npsnetxunit. The contents of

npsnetxunit were the next field written to npsscriptin.

(5) Vertical coordinate data was given the value of zero at this point since

NPSNET determined the vertical coordinate based on system type and location on the

terrain. This zero value was then written to npsscriptin.

(6) The y coordinate transformation was the same as was done for the x

coordinate. And in the case of scenario numbered 716, the SCALE factor was exactly the

same: 240. The y coordinate value was stored in the buffer npsnetyunit and written to the

script file.

(7) The orientation data was read into a buffer called dview. The content of

dview was then written to the script file.

(9) The same orientation angle was written again as the value for the weapon

orientation of the system.

(9) The next field in the script file was elevation above ground. The value

written here was based on which side the system belonged to, and whether the system was

a ground vehicle, a helicopter, or an airplane.

(10) The gun elevation data buffer gunelev was given the value zero and

written to the script file.

(11) The number of rounds fired did not change in this application so the

value of zero was the default written on each script line for this field.

(12) All the vehicles were given the default value of one in the last field of

each script line which indicated to NPSNET that the system was alive.
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b. Processing subsequent node data

Subsequent node information was processed by the inner loop of

writescriptin. Each system had a possibility of fifty subsequent nodes. Unused nodes had -

1.0 entered for the values of their x and y coordinates. Each iteration of the inner loop tested

for x and y values greater than -1.0. If either value was -1.0 then a for loop was entered

which iterated the number of times equal to the number of path node spaces not yet used.

Each iteration of the loop advanced the pointers in the three files which contained

subsequent node data: xnode_dat, ynode-dat, and modedat. After the conclusion of the

loop, a break statement moved control to the outer loop and the next script line was scanned

to determine if it contained useful initial node information.

Except for the hours, minutes, seconds, x coordinate, and y coordinate, all the

other values for the system stayed the same. So only those five excepted fields were given

updated values. All the other fields received the same values that were given to the initial

node script line. The order and number of fields stayed the same whether or not the script

line was for an initial or subsequent node.

3. Calculating direction and speed

After all the script lines were written to the script file npsscriptin, the file was

closed. Then a call to the function calculatemdirection-and-speed was made. The final

processes called by writescriptin are shown in Figure 7. The values entered for the direction

and speed of the systems were only valid for the initial node. Speeds and orientations of

subsequent nodes of a system path had to be calculated next and written into the proper

fields of the script lines.

This was accomplished by determining which script lines represented nodes on a

path. To do this, two lines of the script file npsscriptin were read and compared. If the first

line had a different system number thar. the subsequent line, then they were not related. And

if the first script line was the last node of a path, then the values for orientation and speed

at the last node of the path were given the same values as those given at the next to the last
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Figure 7 The Final Processes Called by Writescriptin
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node of the path. If the two script lines were not related and the first script line was not the

last node of a path, then only the orientation had to be converted to degrees - the speed

remained the one half maximum speed already given in writescriptin.

If the two script lines were of the same system path then the speed and orientation

between the two nodes had to be calculated. The radian orientation was determined using

the system arc tangent function fatan2 which took two floating point arguments: the

difference between the two nodes along the z-axis, and the difference between the two

nodes along the x-axis. The orientation in radians was then converted to degrees. The

speed, in meters per second, was determined by dividing the distance between the two

nodes by the difference in time between the nodes.

In order to compare each script line with its next script line, the file pointer

position at the beginning of the subsequent script line read had to be saved. That way the

pointer could be reset after the subsequent script line read. This was necessary since during

the next iteration of the loop the subsequent script line would be the first script line read.

The two system function- used for this file pointer manipulation were ftell and fseek. Ftell

returned an integer offset from the beginning of the file. This offset was the argument to the

fseek call.

4. Sort

This system command sorted the npsscriptin file in time order. By giving the

following command:

system("sort -o sorted npsscriptin +1 -3 npsscriptin").

The unix sort program sorted the npsscriptin script lines according to the first three fields

of each script line, and wrote the result to the script file called sortednpsscripti:i. At this

stage, all the data needed to display the Janus scenario on NPSNET was contained in the

script file.
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5. Copy

SortedLnpsscriptin was copied to the script file scriptfilein.dat which was read by

NPSNET. The following system command at the end of writescriptin copied the script file.

system("cp sorted npsscriptin /n/gravy 1/work2/pratt/simnet/sdis/coll2/
vehposfiles/scriptfilein.dat").

After the above processes had been run, NPSNET was started, a vehicle was

selected and moved about the virtual battlefield which caused script lines to be written to a

file called scriptfileoutdat.
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V. TRANSLATING AN NPSNET SCRIPT INTO JANUS BINARY
DATA

NPSNET generated a script line each time a system changed its status in speed, or

orientation. These script lines were written to the script file called scriptfileout~dat. The

next step in the Janus/NPSNET cycle was converting the scripted data back into Janus'

binary format and then writing the data to the proper places in the Janus scenario arrays.

The name of the main process in the conversion of data from NPSNET to Janus was

writedatafiles shown in Figure 8.

Figure 8 Writing Data Back to Janus Files
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A. WRITEDATAFILES

Scriptfileout.dat was a history in chronological order of the movements of systems.

Each time the status of a vehicle changed in orientation or speed, a script line was

generated. Not all the script lines generated by NPSNET were necessary to describe new

system paths in the Janus files. Some of the data had to be ignored, but the scripted data

was not ordered in a way that made it easy to distinguish useful script lines. The first

processes in writedatafiles changed the order of the script lines and the order and format of

the data fields in each script line.

The first process in writedatafiles was a system call to the process sort-by-vehno. The

script lines in scriptfileout.dat were sorted chronologically, but subsequent processes

required that the script lines be sorted in vehicle number order and then in chronological

order. The process sort-by.yehno moved the vehicle number field from the third place to

the first place on the script line and then sorted the scriptlines using the system sort

program. The system sort program was used for the convenience of not writing a special

sort routine for this application. The system sort program took the named file argument and

sorted in the order of the key fields designated in the system call. It was possible to specify

that the sorting be done on several key fields by designating a starting field and an ending

field before which sorting would stop.

Setting up the file for sorting was accomplished by moving the vehicle number field

to the first place on the script line and designating it the starting field and then putting the

hours, minutes, and seconds fields next; and designating the field following the seconds

field as the ending field. The result was that all the script lines with the same system number

were group together chronologically. The format of the script lines in scriptfileout.dat, and

the format of the script lines in npsscriptout after the call to sort-by-vehno are shown in

Figure 9.

A problem with using the system sort program was later discovered. Even though an

ending field was designated, if all the values in the key fields were equal to the previous

line values, then subsequent fields were used to sort the script lines. This happened when a
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Sscriptfieout.dat

00 00 08 139 4 5144.487305 0.000000 7153.139648 164.655653 0.0000000 .0000000.000000.000000 0 1
00 00 08 139 4 5706.137695 0.000000 6954.228516 160.498158 0.000000.0.000000.000000 0.00000 0 1
00 00 00 147 12 4153.313477 0.000000 9114.990234 0.000000 0.00000.000000 0.000000 0.550000 0 1
00 00 08 148 12 4087.514648 0.00000 0701.552734 239.856730 0.0000000.000000 .000000 0.550000 0 1
00 00 00 149 12 3397.163026 0.000000 8752265625 0.000000 0.00000 00.000000 .000000.550000 0 i
00 00 00 150 12 3170.947266 0.000000 7628.979492 0.000000 0.00000 0.000000 0.000000 0.550000 0 1
0 00 09 151 12 3315.249023 0.000000 6638.305664 0.000000 0.000000 0.000000 0.000000 0.550000 0 1

npsscriptout
9 00 00 08 4 5144.487305 0.000000 7153.139648 164.655655 0.000000 0.000000 0.000000 0.000000 0 1

139 D00 08 4 5706.137695 0.000000 6954.228516 160.498154 0.000000 0.00000000.000000.000000 0 1
147 00 00 08 12 4153.813477 0.00000 9114.990234 0.000000 0.000000 0.000000 0.00000 0.550000 0 1
148 00 00 08 12 4087.514648 0.000000 2701.552734 239.856735 0.000000 .000000 0.000000 0.5500000 1
149 00 00 08 12 3397.163086 0.000000 8752.265625 0.000000 0.000000 0.000000.000000 0.550000 0 1
150 00 00 08 12 3170.947266 0.000000 7628.979492 0.0000 0.000000 0.000000 0.000000.550000 0 1
15100 00 00 12 3315.249023 0.000000 6638.305664 0.000000 0.0000000.000000 .000000 0.550000 0 1
151 000 111 12 3354.486328 315.642212 6638.305664 0.000000 0.000000.0.00000 0.000000 0.550000 0 1
15100 0128 12 3366.214844 315.876801 6638.305664 O.0000 0.0.00000.0000000.00000 0 4.550000 1
151 00 0128 12 3373.663818 316.025757 6638.305664 0.00000 0.000000 O.0000 0.000000 9.550000 0 1

Figure 9 Script Files: Scriptfileout.dat and Npsscriptout

system in NPSNET was made to turn more than 10 degrees in a second. When that was

done, script lines were generated that had the same values in the first four fields and the tie

was broken by the x coordinate field. This was not a desirable effect because even though

two script lines had the same values in their first four fields the order in which they were
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written preserved the continuity of the points along the path of the system. Ordering of the

x coordinate points alone did not preserve that continuity. This problem with the system

sort routine made it necessary to insure that a system did not turn more than ten degrees per

second.

After the completion of the system call to sort.by.vehno, the system returned to

writedatafiles where a fscanf of maxandmindat was called to get the maximum and

minimum Janus x and y coordinates previously determined. These were used to convert

NPSNET coordinates back into Janus coordinates.

B. EXTRACTING DATA FROM THE SCRIPT LINES

The main purpose of writedatafiles was to determine the path nodes of the system that

was maneuvered in NPSNET, and to write the node data into the proper locations in the

arrays in the Janus scenario files. All the script lines in npsscriptout were read by the

process writedatafiles. Each line was important in determining the path of the system

maneuvered in NPSNET. However, not all the script lines contributed data, and not all the

data in contributing script lines was written to the Janus binary files.

The path of a system in the Janus scenario was, for the purposes of this thesis, an initial

position and a series of nodes (recall that speed and orientation calculations were done in

writescriptin). Each node had an x and y coordinate, and a time in seconds. Each NPSNET

script line referred to one vehicle and the script line had x and z coordinates, and a time in

hours, minutes and seconds. The x and y coordinates and the total time since the beginning

of the scenario were the three data values that had to be written to the proper places in the

Janus binary file DPLOYXXX.DAT. The first line of npsscriptout was read, then a loop

was entered which read each npsscriptout script line until the end of file.

At the beginning of each loop iteration, the total time in seconds was calculated from

the hours, minutes, and seconds buffers. Then the difference in time since the last script line

was read was calculated. Next the system numbers of the current and last iteration of the
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loop were compared. If the system numbers were the same, then the current script line

represented a part of a turn on the system path.

If the system numbers of the two script lines compared were not the same, then the

current script line was the initial node of a new system. And if the previous script line was

a subsequent script line of a system path, then the previous script line's data, which was

stored in an array, was written to the Janus binary file, DPLOYXXX.DAT. Then the current

script line's data was written to DPLOYXXX.DAT. If the previous script line was not part

of a path, then just the current script line was written as the initial node of a system.

A system that was maneuvered in NPSNET usually generated many script lines: each

time the speed or orientation of the vehicle changed a script line was generated. Going back

to the case when script lines were parts of a system path in which turns were represented,

not all of these script lines could be written to DPLOYXXX.DAT or the maximum of fifty

nodes allowed in the Janus arrays would have been quickly reached. So a single turning

point was selected that would represent all the many incremental turns written in the script

lines. The turning point information written to DPLOYXXX.DAT was the x and y

coordinates of the turn, and the time when the turn took place.

The problem of finding a representative turning point from among the incremental

turns along the turn path was solved by not selecting one of those points at all. Instead a

point outside the turn was determined by resection.The function called find-intersection

was taken directly from the movement program used to run an autonomous mobile robot

[Kana91]. The function took two arguments, each of which contained coordinate and

orientation data for two points. One point was taken from the line leading into the turn and
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the other point was taken from the line going out of the turn. From these two lines an

intersection point was determined, Figure 10.

straight line before

Figure 10 Determining a Turning Point

Selecting the two points required determining when a turn took place. Simply

sampling the orientation field of each script line for changes was unsatisfactory. Since if

the system was moving between turns in a straight line and not changing speed, then there

would be no two script lines with the same orientation to indicate straight line movement.

There was no guarantee that other events would generate script lines. Instead the change in

time between nodes and a change in system orientation were used to determine when a turn

started. If the time between two script lines was greater than five seconds and the system
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orientation did not change, then the intersection point was determined. The time used for

the node information was the time at which the turn was initiated. Much more accurate and

elegant algorithms for selecting a turning point are available from among the algorithms

used in robotics research, however the resolution of the Janus system was such that these

algorithms served well enough.

C. CONVERTING THE DATA AND WRITING TO JANUS FILES

Before the data was written back into the binary scenario files, the data was converted

to the units of measure used in Janus. The x and y coordinates were divided by the SCALE

factor and added to their respective minimum values. The time was converted to total

seconds at the beginning of each loop.

Writing the algorithm for finding the correct spot to write the data to was the result of

calculations and observations of octal dumps of the binary files. The position at which, for

example, system number 151 stored the y coordinate of the 27th node of its path was always

the same no matter which scenario was used. The scenario files were arrays after arrays of

data - there was no dynamic variation in the size of the storage. So the starting points of the

arrays written to in numbers of bytes from the start of the file were determined. Knowing

the starting point of the array and using the system command lseek, with the whence

constant set to SEEKSET, it was possible to move the pointer to the beginning of an array.

Again using Iseek, with the whence constant set to SEEKCUR, the system number was

used to calculate the offset in bytes to the point in the array where the data had to be written.

Figure 11 gives an example of such a calculation.
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Given: start of x node array in DPLOYXXX.DAT is the
25236th byte; the system number is 151; and it is the 27th node.

Find the location in the Janus deploy file, DPLOYXXX.DAT,
for the data.

location in
Location of binary files system the fifty
the 27th x of the ( number nodes the

node of - beginning +I minus * alloted + node four
system 151 of the x one each count m

node array system

Location of
the 27th x
node of - 25236 + 150 * 50 + 27 * 4 = 55344

system 151

Figure 11 Example: Determining a Location in Binary Files
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VI. CONCLUSIONS AND FUTURE WORK

It was possible to take a two-dimensional Janus scenario written in a binary format,

convert it to script files in ASCII format and play it in the three-dimensional virtual

battlefield of NPSNET. Thus providing a user the capability of viewing the battlefield in

three-dimensions and maneuvering a system in a more realistic environment. Further, the

resulting movements upon systems on the virtual battlefield provided by NPSNET could

be stored and written back into the Janus scenario. Thus a scenario could be completely

constructed, or existing scenarios could be modified in a more realistic NPSNET

environment.

Future work on this application of NPSNET could include more realistic turning of

vehicles. The integration of an algorithm to generate smooth turns with changes in velocity

during and after the turn would be more realistic than the current version which simply

moves to a point and abruptly changes direction. Also the system speed should be modified

just before entering the turn and after leaving the turn. Many such algorithms are available

in the movement control routines of the autonomous mobile robot Yamabico. The

Yamabico code is written in "C" and has been tested and it should be easy to assimilate the

Yamabico code into NPSNET. [Kana9l]

These algorithms could be integrated into the calculatedirectionand-speed process

which was called at the end of the writescriptin process. Janus was limited to only fifty

nodes for a system path, but NPSNET is not so restrictive. Using the Yamabico code, many

script lines could be generated to describe a smooth turn with changes in speed which could

be written to the input script file.

Yet another improvement of this application could take a single vehicle path and

generate script lines for a formation of vehicles following along the same path. It seems that

the complexity of this problem could be handled by considering the formation as a wire-

frame model, where each vertex of the wire frame represents a vehicle in the formation.

Then projective transformations (forward kinematics in robotics jargon) could be used to
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calculate the locations of the vertices of the wire-frame model in Cartesian coordinates. The

rotations at the vertices could be done by Euler angle transformations. A "C++" version of

these methods was written by Sandra Davidson in an Naval Postgraduate School thesis for

a graphic simulation of a walking robot [Davi 93].

A list of unused system numbers would have to be made at the beginning of the

process writescriptin. Then the available system numbers could be assigned to the vertices

of the polygon representing the formation of systems. The transformations would only have

to be done in two dimensions since NPSNET uses the terrain elevations to provide the

elevation data of the systems.

While the use of a three-dimi sional virtual battlefield was clearly more realistic, and

so worth pursuing, another area of research that could be explored with this application is

the question of how much a three-dimensional view of the a virtual battlefield would help

in the selection of courses of action. It seemed self evident that a three-dimensional view

would be an enhancement, but how much better would it be?
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APPENDIX A: USER GUIDE

A. INTRODUCTION

This chapter provides a step-by-step description of how to add vehicle paths to a Janus

binary database using NPSNET. Figure 12 lists the files required to run this application.

Executables:
goldtestldeploy/readsundeploy

goldtestlforce/readsunforce calculate-direction-and speed
goldtest/system/readsunsystem sort-by_vehno

writescriptin writedatafiles
goldtestdeploy/janustonpsscript_datlmaxandmin

Janus Data Files:
DPLOYXXX.DAT FORCXXX.DAT SYSTMXXX.DAT

Data Files in goldtest/deploy/janustonpsnet dat!
xunit-dat inode-dat tnode-dat
yunit-dat ynode-dat dview-dat

system-dat maxandmin dat

Data Files in gyoldtest/deploy/:
npsscriptin npscriptout

sorted npsscriptin sorted npsscriptout
temp npsscriptin

Directories with Makefiles:
-smithrslthesislgoidtest

-smithrs/thesis/goldtestldeploy

-smithrs/thesistgoidtestlforce
-smithrstthesis/goldtest/system

'-smithrs/thesis/goldtestldeploy/janustonpsscript-dat

Figure 12 Files Required for 3-D Script Generation

37



Figure 13 shows an example of how to run the programs developed in this thesis.

> cp DPLOY716.DAT -smithrs/thesis/goldtest/deploy
> cp FORC716.DAT -smithrs/thesis/goldtest/force
> cp SYSTM716.DAT -smithrs/thesis/goldtest/system
> cd -smithrs
> cd deploy
> readsundeploy DPLOY716.DAT
> cd.jorce
> readsunforce FORC716.DAT
> cd.Jsystem
> readsunsystem SYSTM716.DAT
> cd deploy/janustonpsnet..dat
> maxandmin
> cd....
"• writescriptin
"• npsnet
(From the popup menus select the following.)

- 2D Map Window
- Display 2d Map

- Script Menu
- Record and Play

(Entities on the screen are manuevered at this point and the movements are
stored to a script file.)

- Exit
> writedatafiles
(Scripted movements are now stored in the original Janus scenario. To view

the new movements on NPSNET proceed with the following commands.)
"> cd deploy
"• readsundeploy DPLOY716.DAT
> cd..
"• writescriptin
"• npsnet
(From the popup menu select the following.)

- 2D Map Window
- Display 2d Map

- Script Menu
- Play

Figure 13 Example Program Run of Janus Scenario 716

B. BINARY TO ASCII FILES

First, a Janus scenario of four files is required: they will be DPLOYXXX.DAT,

FORCXXX.DAT, SYSTMXXX.DAT and JSCRNXXX.DAT, where the XXX refers to a
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three -digit number associated with a particular scenario. The executable files which read

the scenario files are in the same directories and are called readsundeploy, readsunforce,

and readsunsystem: recall that JSCRNXXX.DAT is not used. The three previous programs

produce seven ASCII files which store the data in files called xunit-dat, yuniLdat,

xnodedat, ynodevdat, tnode-dat, dviewjdat, systemdat. These files are found in nI

gravy l/work3/smithrskhesis/goldtest/deploy/janustonpsnet..dat/.

C. ASSEMBLING THE INPUT SCRIPT FILE

The maximum and minimum values of all the x and y coordinates in the scenario must

also be determined. Maxandmin produces the file maxandmindat in which the maximum

and minimum x and y values are stored. The process file maxandmin and the data file

maxandmin.dat are found in /n/gravyl/work3/smithrs/thesis/goldtest/deploy/

janustonpsnet.dat. These minimum values are used by other processes to determine the

scale of the scenario when displayed on NPSNET. Since it is unlikely that paths added to

the scenario will change the minimum values, it is necessary to run this process only once.

The script file which is the input to NPSNET is produced by calling the process file

writescriptin found in /n/gravyl/work3/smithrsthesis/goldtest. The script file which

NPSNET will read is called scriptflilein.dat and is found in /n/gravyl/work2/pratt/simnet/

sdis/coll2/vehposfiles.

D. RUNNING NPSNET

To run NPSNET go to the directory, /n/gravyl/work2/pratt/sinmet/sdis/coll2. Type

npsnet w. The argument w allows the user to choose the size of the window. Once the

terrain is displayed, hold down a right mouse button click and highlight the "2D Map

Window" from the popup menu. Another popup menu will appear from which "Display 2d

Map" should be highlighted. This causes a two-dimensional map to be displayed in the

upper right-hand corner of the screen.

Next, the input script file must be started and displayed. Again holding down the right

mouse button in an NPSNET window, highlight "Script Menu". Another popup menu will
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appear and "Record and Play" must be selected. This will open both the input and output

script files used by NPSNET and start the scripted Janus scenario stored in the input script

file.

System selections are made by moving the cursor into the two-dimensional screen

area, selecting a system icon, and pressing the left mouse button. A few seconds will pass

before the view presented on the three-dimensional screen is that of the system selected.

Now the user can move the system around the battlefield interacting with the terrain and

other systems from the three-dimensional point of view of the system selected. Movement

is controlled by arrow keys, spaceball, or dials depending on what is available at the

terminal.

Another feature added to the NPSNET/Janus interface was the ability to select a

system icon from the two-dimensional screen with the mouse and, while holding down the

mouse button, to move the icon to another location. This movement generated another

script line in the output script file, and so it was recorded to the Janus scenario as a starting

location if no other script lines came before it.

E. STORING THE NEW PATH DATA TO THE JANUS DATABASE

A fter the scripting option was selected, all the while that NPSNET was running it

was producing a script file called scriptfileouLdat. The file is in /n/gravyl/work2/pratt/

simnet/sdis/coll2lvehposfiles. The process file which reads the datam converts it, and writes

it to the Janus database is called writedatafiles. It is found in the directory //gravy l/work3/

smithrsAhesis/goldtes. After rumning this process the new path data is stored in the Janus

deploy file, DPLOYXX.DAT.

F. DISPLAYING THE NEW PATH DATA

The new path data can be displayed with some of the same process files that created

the initial scripted version of the Janus scenario: the processes readsunsystem,

readsunforce, and maxandmin does not need to be called again.
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So the first process to call is readsundeploy which is found in /n/gravyl/work3/

smithrs/thesis/goldtest/deploy, and then writescriptin found in /n/gravyl/work3/smithrs/

thesis/goldtest - recall that maxandmin doesn't need to be run again. Now the NPSNET

input script file is ready for display. Start NPSNET and bring up the two-dimensional map

in the same way as before. Next select the "Script Menu" from the popup menu in the same

way as before except that instead of selecting "Record and Play" from the second popup

menu, select "Play Tracks". After the scenario is displayed the user can watch the newly

scripted system from another system or select the system in the same way as before and

watch the scenario unfold from the point of view of the newly scripted vehicle.

G. TRANSPORTING THE FILES TO OTHER DIRECTORIES

Take the Makefiles along with their respective process files. The storage file names,

with their entire path, are usually referred to at the top of the process files which write or

read them. So if the files are moved it is necessary to change the #define calls which specify

the paths.
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